Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago (2024)

References

  1. Morgan, W. J. Deep mantle convection plumes and plate motions. Bull. Am. Assoc. Pet. Geol. 56, 203–213 (1972).

    Google Scholar

  2. Torsvik, T. H. et al. Pacific plate motion change caused the Hawaiian–Emperor Bend. Nat. Commun. 8, 15660 (2017).

    Article Google Scholar

  3. Tarduno, J. A. et al. The Emperor seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science 301, 1064–1069 (2003).

    Article Google Scholar

  4. Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor–Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

    Article Google Scholar

  5. Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E. & Flament, N. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).

    Article Google Scholar

  6. Wessel, P. & Kroenke, L. W. Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J. Geophys. Res. Solid Earth 113, B6 (2008).

    Article Google Scholar

  7. Torsvik, T. H. et al. Pacific–Panthalassic reconstructions: overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689 (2019).

    Article Google Scholar

  8. Bono, R. K., Tarduno, J. A. & Bunge, H.-P. Hotspot motion caused the Hawaiian–Emperor Bend and LLSVPs are not fixed. Nat. Commun. 10, 3370 (2019).

    Article Google Scholar

  9. Müller, R. D. et al. Global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    Article Google Scholar

  10. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).

    Article Google Scholar

  11. Reagan, M. et al. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet. Sci. Lett. 506, 520–529 (2019).

    Article Google Scholar

  12. Sutherland, R. et al. Continental scale of geographic change across Zealandia during subduction zone initiation. Geology 48, 419–424 (2020).

    Article Google Scholar

  13. Whittaker, J. et al. Major Australian–Antarctic plate reorganization at Hawaiian–Emperor Bend time. Science 318, 83–86 (2007).

    Article Google Scholar

  14. Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).

    Article Google Scholar

  15. Richards, M. A. & Lithgow-Bertelloni, C. Plate motion changes, the Hawaiian–Emperor Bend, and the apparent success and failure of geodynamic models. Earth Planet. Sci. Lett. 137, 19–27 (1996).

    Article Google Scholar

  16. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Article Google Scholar

  17. Faccenna, C., Becker, T. W., Lallemand, S. & Steinberger, B. On the role of slab pull in the Cenozoic motion of the Pacific Plate. Geophys. Res. Lett. 39, L03305 (2012).

    Article Google Scholar

  18. Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

    Article Google Scholar

  19. Buffett, B. A. Plate force due to bending at subduction zones. J. Geophys. Res. Solid Earth 111, B9 (2006).

    Article Google Scholar

  20. Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. Int. 43, 163–200 (1975).

    Article Google Scholar

  21. Billen, M. I. Modeling the dynamics of subducting slabs. Annu. Rev. Earth Planet. Sci. 36, 325–356 (2008).

    Article Google Scholar

  22. Stadler, G. et al. The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329, 1033–1038 (2010).

    Article Google Scholar

  23. Taylor, B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett. 241, 372–380 (2006).

    Article Google Scholar

  24. Levashova, N. M., Shapiro, M. N., Beniamovsky, V. N. & Bazhenov, M. L. Paleomagnetism and geochronology of the Late Cretaceous–Paleogene island arc complex of the Kronotsky Peninsula, Kamchatka, Russia: kinematic implications. Tectonics 19, 834–851 (2000).

    Article Google Scholar

  25. Konstantinovskaya, E. in Arc–Continent Collision (eds Brown D. & Ryan, P. D.) 247–277 (Springer, 2011).

  26. Rudi, J. et al. An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in Earth’s mantle. In Proc. International Conference for High Performance Computing, Networking, Storage, and Analysis (Association for Computing Machinery, 2015).

  27. Bakhteev, M., Morozov, O. & Tikhomirova, S. Structure of the eastern Kamchatka ophiolite-free collisional suture–Grechishkin thrust. Geotectonics 31, 236–246 (1997).

    Google Scholar

  28. Domeier, M. et al. Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene. Sci. Adv. 3, eaao2303 (2017).

    Article Google Scholar

  29. Vaes, B., Van Hinsbergen, D. J. & Boschman, L. M. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian basin: clues to causes of Cretaceous and Eocene plate reorganizations. Tectonics 38, 1367–1413 (2019).

    Article Google Scholar

  30. Seton, M. et al. Melanesian back-arc basin and arc development: constraints from the eastern Coral Sea. Gondwana Res. 39, 77–95 (2016).

    Article Google Scholar

  31. Leng, W. & Gurnis, M. Subduction initiation at relic arcs. Geophys. Res. Lett. 42, 7014–7021 (2015).

    Article Google Scholar

  32. Faccenna, C., Holt, A. F., Becker, T. W., Lallemand, S. & Royden, L. H. Dynamics of the Ryukyu/Izu–Bonin–Marianas double subduction system. Tectonophysics 746, 229–238 (2018).

    Article Google Scholar

  33. Tarduno, J., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian–Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009).

    Article Google Scholar

  34. Matthews, K. J., Seton, M. & Müller, R. D. A global-scale plate reorganization event at 105–100 Ma. Earth Planet. Sci. Lett. 355, 283–298 (2012).

    Article Google Scholar

  35. Steinberger, B. & Gaina, C. Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology 35, 407–410 (2007).

    Article Google Scholar

  36. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article Google Scholar

  37. Matthews, K. J. et al. Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific. Earth Sci. Rev. 140, 72–107 (2015).

    Article Google Scholar

  38. Whittaker, J. M., Williams, S. E. & Müller, R. D. Revised tectonic evolution of the eastern Indian Ocean. Geochem. Geophys. Geosyst. 14, 1891–1909 (2013).

    Article Google Scholar

  39. Granot, R., Cande, S., Stock, J. & Damaske, D. Revised Eocene–Oligocene kinematics for the West Antarctic rift system. Geophys. Res. Lett. 40, 279–284 (2013).

    Article Google Scholar

  40. Doubrovine, P. V. & Tarduno, J. A. A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous. J. Geophys. Res. Solid Earth 113, 2 (2008).

    Article Google Scholar

  41. Mortimer, N. Evidence for a pre-Eocene proto-Alpine Fault through Zealandia. N. Z. J. Geol. Geophys. 61, 251–259 (2018).

    Article Google Scholar

  42. Sutherland, R. et al. Widespread compressional faulting associated with forced Tonga–Kermadec subduction initiation. Geology 45, 355–358 (2017).

    Article Google Scholar

  43. Karlsen, K. S., Domeier, M., Gaina, C. & Conrad, C. P. A tracer-based algorithm for automatic generation of seafloor age grids from plate tectonic reconstructions. Comput. Geosci. 140, 104508 (2020).

  44. Hu, J. & Gurnis, M. Subduction duration and slab dip. Geochem. Geophys. Geosyst. 21, e2019GC008862 (2020).

    Article Google Scholar

  45. Coney, P. J. & Reynolds, S. J. Cordilleran Benioff zones. Nature 270, 403–406 (1977).

    Article Google Scholar

  46. Bower, D. J., Gurnis, M. & Flament, N. Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8–22 (2015).

    Article Google Scholar

  47. Zhong, S., Zuber, M. T., Moresi, L. N. & Gurnis, M. The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 11063–11082 (2000).

    Article Google Scholar

  48. Hu, J., Liu, L. & Zhou, Q. Reproducing past subduction and mantle flow using high-resolution global convection models. Earth Planet. Phys. 2, 189–207 (2018).

    Article Google Scholar

  49. Campbell, I. & Griffiths, R. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article Google Scholar

  50. Mao, X., Gurnis, M. & May, D. A. Subduction initiation with vertical lithospheric heterogeneities and new fault formation. Geophys. Res. Lett. https://doi.org/10.1002/2017GL075389 (2017).

  51. Zhong, X. & Li, Z. Forced subduction initiation at passive continental margins: velocity-driven versus stress-driven. Geophys. Res. Lett. 46, 11054–11064 (2019).

    Article Google Scholar

  52. Burstedde, C., Wilcox, L. C. & Ghattas, O. p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33, 1103–1133 (2011).

    Article Google Scholar

  53. Sundar, H. et al. Parallel geometric–algebraic multigrid on unstructured forests of octrees in SC12. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis (Association for Computing Machinery, 2012).

  54. Rudi, J., Stadler, G. & Ghattas, O. Weighted BFBT preconditioner for Stokes flow problems with highly heterogeneous viscosity. SIAM J. Sci. Comput. 39, S272–S297 (2017).

    Article Google Scholar

  55. Rudi, J., Shih, Y.-h. & Stadler, G. Advanced Newton methods for geodynamical models of Stokes flow with viscoplastic rheologies. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2020GC009059 (2020).

Download references

Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago (2024)
Top Articles
Steve Spurrier weighs in on Tennessee Vols vs Florida and nicknaming The Swamp | Toppmeyer
Single Women Seeking Men in Hixon, TN
Nybe Business Id
Star Sessions Imx
Chambersburg star athlete JJ Kelly makes his college decision, and he’s going DI
Top Financial Advisors in the U.S.
Seething Storm 5E
Bhad Bhabie Shares Footage Of Her Child's Father Beating Her Up, Wants Him To 'Get Help'
Imbigswoo
Autozone Locations Near Me
Infinite Campus Parent Portal Hall County
Lqse-2Hdc-D
454 Cu In Liters
Think Up Elar Level 5 Answer Key Pdf
Cvb Location Code Lookup
Apus.edu Login
Espn Horse Racing Results
Trivago Sf
Energy Healing Conference Utah
Azur Lane High Efficiency Combat Logistics Plan
Okc Body Rub
How to Watch Every NFL Football Game on a Streaming Service
Blackboard Login Pjc
'Insidious: The Red Door': Release Date, Cast, Trailer, and What to Expect
Black Lion Backpack And Glider Voucher
La Qua Brothers Funeral Home
Does Circle K Sell Elf Bars
Chapaeva Age
Quality Tire Denver City Texas
Murphy Funeral Home & Florist Inc. Obituaries
Navigating change - the workplace of tomorrow - key takeaways
Daily Journal Obituary Kankakee
Kips Sunshine Kwik Lube
Unlock The Secrets Of "Skip The Game" Greensboro North Carolina
Autozone Locations Near Me
Louisville Volleyball Team Leaks
8005607994
Skill Boss Guru
8 Ball Pool Unblocked Cool Math Games
Invalleerkracht [Gratis] voorbeelden van sollicitatiebrieven & expert tips
Cpmc Mission Bernal Campus & Orthopedic Institute Photos
“To be able to” and “to be allowed to” – Ersatzformen von “can” | sofatutor.com
SF bay area cars & trucks "chevrolet 50" - craigslist
Courtney Roberson Rob Dyrdek
Walgreens On Secor And Alexis
Pike County Buy Sale And Trade
Access to Delta Websites for Retirees
Tito Jackson, member of beloved pop group the Jackson 5, dies at 70
House For Sale On Trulia
Barber Gym Quantico Hours
Verilife Williamsport Reviews
All Obituaries | Roberts Funeral Home | Logan OH funeral home and cremation
Latest Posts
Article information

Author: Mr. See Jast

Last Updated:

Views: 5869

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.